CAL POLY Energy Localization in Granular Crystals for Energy Harvesting

SAN LUIS OBISPO Marisa Lee*, Rachel Loh*, Harry Yan*® Faculty Advisor: Dr. Stathis Charalampidis

This final system of 2N equations can be written in the form X = F(t, ) with | 4th-Order Runge-Kutta (RK4) 10

X = [uy, Uy, ., Uy, D1, P2y - PN]T RK4 is a numerical iterative method for épprrjximating solutions to initial ! ' ' '
and value problems (IVPs). For a general IVP ¥ = F(t, %) with X = ¥(t), X(to) = 6 b
D1 > - . . o

Figure 1: Granular chain & Xg, and t, = ty + n h, where h is the time step, we have the following:
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The focus of this project is the study of time-periodic solutions on a Lo a EN ER ky = hF(tn"?n) %A’ 7
dimer granular crystal chain. We consider a chain composed of N = 20 Ft,%) = 7‘1 [50,0 +up — 1’-1]§r - M—i[5o,1 +uy — uz]ﬁr —Tl Ez =hF (t + = ,Xn + k_l) g sl ]
spherical beads which are made of chrome steel (dark blue particles : N s
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in Figure 1) and tungsten carbide (light blue particles in Figure 1) k; = hF (t +- xn+—)

materials (see material parameters in Table 1). The beads are supported
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by two rods which restrict their lateral movements. A static force, (" 1 n 3) 1+ J E
denoted as F, hereafter, is applied at both ends in order to make sure . Epe1 = Xn +E(k1 + ZEZ +2k; + k4) ‘ k J
each bead is in contact with adjacent beads. The granular chain is Linear Problem and N°"“?| Mode§ ) ) % 1 2 3 4 5 6 7 8
f i i i th Assume a very small amplitude a is used which leads to a relatively small Fixed Point Method for Time-Periodic Solutions: Newton’s Method Approach Frequencies (in kHz)
harmonically driven at the boundaries corresponding to 0*" and
(N + 1)”‘ location of the chain. The drive at both ends has the form displacement, so Set up the Poincaré map Figure 3: Frequency continuation graph with eigenfrequencies from linear problem
acos(2nft) where a and f are the amplitude and frequency of the m K1 P(f(o)) =@ —%(T)
L . on > . . AT g _ _ . i
excitation, respectively. Using a Taylor expansion, the equations of motion become where X(T) is the result of integrating ¥ = F(t,X) fromt=0to t =T by J a0 yu0 , S
B kg o i = Koo (u —u) (u ) using RK4 method. Apply Newton’s method to the map P to get . s @
(mm) (Pa) =) ) M o RO = 3OO — 566 P(FOF),  k=01,.. ‘ .
withk, =34 6% where #©0 is the kth iterate and J is the Jacobian matrix of P given by T : g 2
Chrome 9.525 200 * 10° 02 7780 28.16 o2 © 03(T) = S £,
Steel J= T‘ = [x —x(T)] - E) : <!
Thus we can write the system of 2N first-order differential equations in 4
Tungsten 9.525 668 % 10° 0.24 15800 57.19 matrix form Since the Jacobian is not available, we then define ‘ 4 2 ’ o ®
Carbide Y =AY 9% (t) i) ] 2o PR TR T es o s
withY = [u u 17 and V(e = Fro) ! " et
Table 1: Material parameters = [y e, Uno Pr s PN 0 Figure 4: f = 5 kHz,a = 1nm case, the magnitudes of eigenvalues are within the

and formally differentiate ¥ = F(t,x) with respect to . This way, we

I
A= 1 real/complex unit circle
Equations of Motion “\B (_ ) i obtain the variational problem
T

The granular crystal chain is modeled b v _ oF "
8 4 Y where @ and I is the NXN zero and identity matrices respectively, and iy ot 15
Ay 3 A 3o with initial conditions V(0) = I and Jacobian of F given b ‘i = D;F. Visthe ‘
ﬁn: _ 1[50n—1+un—1_un]2 __n[60n+un_un+1]z__n K0+K1 Kl o ( ) . & yax * o
Mn ’ + M,t + T v o 0 0 principal fundamental matrix solution, and V(t = T) = M corresponds to the = w
withn = 1,2,..., N. The parameters and variables are presented in Table K ! K. -1|—K K monodromy matrix. Its eigenvalues denoted by A are called the Floguet | = é: °o o og
2. We break down this second-order ordinary differential equation into L =tz 2 : multipliers and determine the stability trait of the time-periodic solutions > >
a system of two first-order differential equations B = 1%2 .MZ MZ . 0 identified via Newton's method. In particular, if |1] > 1, this will signal a o
- N N N dynamical instability of the pertinent waveform. Otherwise, i.e., |A| < 1, the
} Ky—» Ky-2 + Ky-1 Ky-1 Lo ) 2 o 20
Uy = Pn T T ah— i solution is deemed to be stable. Its eigenvalues are called the Floquet n Re())
X Anes Loa, HA. N-1 N-1 N-1 multipliers, which determine the stability of time periodic solutions.
Pn = o, [60,11—1 +Up-q — un]+ ~u, [50,11 +u, — un+1]+ - 0 0 Kn-1 _ Kn-1 + Ky Figure 5: f = 5 kHz,a = 1um case, the magnitudes of eigenvalues are away from the
My My Numerical Result: Frequency continuation real/complex unit circle
To achieve our goal of matching the maximum velocity with the resonant
) . : : _ -10
@, PsEcamE e R A 4, Ehsile e e e We solve the above system of ODEs by using Y, = y,,e'®. This results in an frequencies, we pe.rformed a frequency continuation for a = 107" where Future Directions
bead nth pead eigenvalue problem of the form of Ay = Ay. Figure 2 presents the we stored the maximum velocity of a representative bead for each frequency «  Perform a frequency continuation with value of the amplitude at 10~¢
eigenvalues (normal modes) where f = 2nw. as this shown in Figure 3 with a solid black line. Referring to the linearized and identify the stability characteristics of time-period solutions.
1, Velocity of the nth bead M, Mass of the nth bead 8 i problem above, we then found the eigenvalues of matrix A (shown as *  Embed a defect (or impurity) at the center of the chain and explore the
JL Lo oo ° vertical solid red Ii.nes in Figurg 3). We sg;cessfully confirmed that the configuration space of time-period solutions.
i, Acceleration of the ntt Som Precompression factor of s oo o ° J fr'equenues at which thg maximum veloc.mes oc'cur.red métched these «  The defect plays the role of a PZT sensor. Stable, time-periodic solutions
bead the ' bead (F, = A 53/2) Sl ] eigenvalues. Representative examples of time-periodic solutions for two in that case (with high amplitude) will be suitable for energy harvesting
2 E N cases: close to the linear regime (Figure 4) and at the non-linear regime applications.
~ 4r- o bl .
[x]4 [x]; = max(0,x) T Dissipation parameter =L o © ° | (Figure 5).
° References
2 o 1
Table 2: Variables L . ° | V. F. Nesterenko, Dynamics of Heterogeneous Materials, Springer, New York, NY, USA, 2001.
o E. G. Charalampidis, F. Li, C. Chong, J. Yang, and P. G. Kevrekidis, “Time-Periodic Solutions of Driven-Damped Trimer Granular Crystals,” Mathematical Problems in
| | | | | | | | |
*Frost Research Fe}lows . . % 2 4 6 8 10 12 14 16 18 20 Engineering, vol 15, 2015.
Thank you to the Bill and Linda Frost Fund for their generous support Eigenfrequency index A. Nayfeh, B. Balacharan, “Applied Noninear Dynamics,” J. Wiley & Sons, pp. 423-438, 1995
of this work in Summer 2020. Figure 2: Eigenvalues from the linear problem

C. Chong, P. G. Kevrekidis, “Coherent Structures in Granular Crystals: from Experiment and Modelling to Computation and Mathematical Analysis,” Springer, 2018.



