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Numerical Result: Frequency continuation
To achieve our goal of matching the maximum velocity with the resonant
frequencies, we performed a frequency continuation for 𝑎 = 10%&' where
we stored the maximum velocity of a representative bead for each frequency
as this shown in Figure 3 with a solid black line. Referring to the linearized
problem above, we then found the eigenvalues of matrix 𝒜 (shown as
vertical solid red lines in Figure 3). We successfully confirmed that the
frequencies at which the maximum velocities occurred matched these
eigenvalues. Representative examples of time-periodic solutions for two
cases: close to the linear regime (Figure 4) and at the non-linear regime
(Figure 5).
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Set Up
The focus of this project is the study of time-periodic solutions on a
dimer granular crystal chain. We consider a chain composed of 𝑁 = 20
spherical beads which are made of chrome steel (dark blue particles
in Figure 1) and tungsten carbide (light blue particles in Figure 1)
materials (see material parameters in Table 1). The beads are supported
by two rods which restrict their lateral movements. A static force,
denoted as 𝐹' hereafter, is applied at both ends in order to make sure
each bead is in contact with adjacent beads. The granular chain is
harmonically driven at the boundaries corresponding to 0,- and
(𝑁 + 1),- location of the chain. The drive at both ends has the form
𝑎cos(2𝜋𝑓𝑡) where a and f are the amplitude and frequency of the
excitation, respectively.

Figure 1: Granular chain
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Material 𝑟
(𝑚𝑚)

𝐸 (𝑃𝑎) 𝝊 𝝆 (𝒌𝒈
𝒎𝟑) 𝑀 (𝑔)

Chrome 
Steel

9.525 200 ∗ 10G 0.27 7780 28.16

Tungsten 
Carbide

9.525 668 ∗ 10G 0.24 15800 57.19

4th-Order Runge-Kutta (RK4)
RK4 is a numerical iterative method for approximating solutions to initial
value problems (IVPs). For a general IVP ̇⃗𝑥 = 𝐹⃗ 𝑡, 𝑥⃗ with 𝑥⃗ = 𝑥⃗ 𝑡 , 𝑥⃗ 𝑡' =
𝑥⃗', and 𝑡P = 𝑡' + 𝑛 ℎ, where ℎ is the time step, we have the following:

𝑘& = ℎ 𝐹⃗ 𝑡P, 𝑥⃗P
𝑘T = ℎ 𝐹⃗ 𝑡P +

-
T
, 𝑥⃗P +

UV
T

𝑘W = ℎ𝐹⃗ 𝑡P +
-
T
, 𝑥⃗P +

UX
T

𝑘Y = ℎ𝐹⃗ 𝑡P + ℎ, 𝑥⃗P + 𝑘W

𝑥⃗PZ& = 𝑥⃗P +
1
6 𝑘& + 2𝑘T + 2𝑘W + 𝑘Y

Equations of Motion
The granular crystal chain is modeled by

𝑢̈P =
𝐴P%&
𝑀𝑛

𝛿',P%& + 𝑢P%& − 𝑢P Z

W
T −

𝐴P
𝑀P

𝛿',P + 𝑢P − 𝑢PZ& Z

W
T −

𝑢̇P
𝜏

with 𝑛 = 1,2,… ,𝑁. The parameters and variables are presented in Table
2. We break down this second-order ordinary differential equation into
a system of two first-order differential equations

b
𝑢̇P = 𝑝P

𝑝̇P =
defV
ge

𝛿',P%& + 𝑢P%& − 𝑢P Z

h
X − de

ge
𝛿',P + 𝑢P − 𝑢PZ& Z

h
X − ie

j

𝑢P Displacement of the 𝑛kl
bead

𝐴P Elastic coefficient of the 
𝑛kl bead

𝑢̇P Velocity of the 𝑛kl bead 𝑀P Mass of the 𝑛kl bead

𝑢̈P Acceleration of the 𝑛kl
bead

𝛿',P Precompression factor of 
the 𝑛kl bead (𝐹' = 𝐴P𝛿',P

⁄W T)

𝑥 Z 𝑥 Z = max 0, 𝑥 𝜏 Dissipation parameter

Table 1: Material parameters

Table 2: Variables

Figure 2: Eigenvalues from the linear problem
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Linear Problem and Normal Modes
Assume a very small amplitude 𝑎 is used which leads to a relatively small
displacement, so

qe%qerV
st,e

≪ 1

Using a Taylor expansion, the equations of motion become
𝑢̈P =

vefV
ge

𝑢P%& − 𝑢P − ve
ge

𝑢P − 𝑢PZ& − q̇e
j

with 𝐾P =
W
T
𝐴P𝛿',P

V
X .

Thus we can write the system of 2𝑁 first-order differential equations in
matrix form

𝑌̇ = 𝒜𝑌
with 𝑌 = 𝑢&,… , 𝑢y, 𝑝&,… , 𝑝y z and

𝒜 =
𝕆 𝕀

ℬ −
1
𝜏 𝕀

where 𝕆 and 𝕀 is the 𝑁×𝑁 zero and identity matrices respectively, and

ℬ =

−
𝐾' + 𝐾&
𝑀&

𝐾&
𝑀&

0 ⋯ 0

𝐾&
𝑀T

−
𝐾& + 𝐾T
𝑀T

𝐾T
𝑀T

⋮

0 ⋱ ⋱ ⋱ 0

⋮
𝐾y%T
𝑀y%&

−
𝐾y%T + 𝐾y%&

𝑀y%&

𝐾y%&
𝑀y%&

0 ⋯ 0
𝐾y%&
𝑀y

−
𝐾y%& + 𝐾y

𝑀y

We solve the above system of ODEs by using 𝑌P = 𝑦Pe��,. This results in an
eigenvalue problem of the form of 𝒜𝑦 = 𝜆𝑦 . Figure 2 presents the
eigenvalues (normal modes) where 𝑓 = 2𝜋𝜔.

Fixed Point Method for Time-Periodic Solutions: Newton’s Method Approach
Set up the Poincaré map

𝑃 𝑥⃗ ' = 𝑥⃗ ' − 𝑥⃗ 𝑇
where 𝑥⃗ 𝑇 is the result of integrating ̇⃗𝑥 = 𝐹⃗ 𝑡, 𝑥⃗ from t = 0 to 𝑡 = 𝑇 by
using RK4 method. Apply Newton’s method to the map 𝑃 to get

𝑥⃗ ',UZ& = 𝑥⃗ ',U − 𝐽 �⃗ t,�
%& 𝑃 𝑥⃗ ',U , 𝑘 = 0,1,…

where 𝑥⃗ ',U is the 𝑘kl iterate, and 𝐽 is the Jacobian matrix of 𝑃 given by
𝐽 = �

��⃗ t 𝑥⃗ ' − 𝑥⃗ 𝑇 = 𝕀 − ��⃗ z
��⃗ t . 

Since the Jacobian is not available, we then define

𝑉 𝑡 =
𝜕𝑥⃗ 𝑡
𝜕𝑥⃗ '

and formally differentiate 𝑥⃗ = 𝐹⃗ 𝑡, 𝑥⃗ with respect to 𝑥⃗ ' . This way, we
obtain the variational problem

��
�,
= ��

��⃗
𝑉

with initial conditions 𝑉 0 = 𝕀 and Jacobian of 𝐹⃗ given by ��
��⃗
= 𝐷�⃗𝐹⃗. 𝑉 is the

principal fundamental matrix solu]on, and 𝑉 𝑡 = 𝑇 = 𝑀 corresponds to the
monodromy matrix. Its eigenvalues denoted by 𝜆 are called the Floquet
multipliers and determine the stability trait of the time-periodic solutions
identified via Newton's method. In particular, if 𝜆 > 1, this will signal a
dynamical instability of the pertinent waveform. Otherwise, i.e., 𝜆 ≤ 1, the
solution is deemed to be stable. Its eigenvalues are called the Floquet
multipliers, which determine the stability of time periodic solutions.

This final system of 2𝑁 equations can be written in the form ̇⃗𝑥 = 𝐹⃗ 𝑡, 𝑥⃗ with
𝑥⃗ = 𝑢&, 𝑢T,… , 𝑢y, 𝑝&, 𝑝T,… , 𝑝y z

and 

𝐹⃗ 𝑡, 𝑥⃗ =

𝑝&
⋮
𝑝y

dt
gV

𝛿',' + 𝑢' − 𝑢& Z

h
X − dV

gV
𝛿',& + 𝑢& − 𝑢T Z

h
X − iV

j
⋮

d�fV
g�

𝛿',y%& + 𝑢y%& − 𝑢y Z

h
X − d�

g�
𝛿',y + 𝑢y − 𝑢yZ& Z

h
X − i�

j

.

Figure 3: Frequency continuation graph with eigenfrequencies from linear problem

Figure 4: 𝒇 = 𝟓 𝒌𝑯𝒛, 𝒂 = 𝟏𝒏𝒎 case, the magnitudes of eigenvalues are within the 
real/complex unit circle

Figure 5: 𝒇 = 𝟓 𝒌𝑯𝒛, 𝒂 = 𝟏𝝁𝒎 case, the magnitudes of eigenvalues are away from the 
real/complex unit circle
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Future Directions
• Perform a frequency continuation with value of the amplitude at 10%�

and identify the stability characteristics of time-period solutions.
• Embed a defect (or impurity) at the center of the chain and explore the 

configuration space of time-period solutions.
• The defect plays the role of a PZT sensor. Stable, time-periodic solutions 

in that case (with high amplitude) will be suitable for energy harvesting 
applications.
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